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Exact solution of a one-parameter family of asymmetric exclusion processes
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We define a family of asymmetric processes for particles on a one-dimensional lattice, depending on a
continuous parameterlP@0,1#, interpolating between the completely asymmetric processes~for l51) and the
n51 drop-push models~for l50). For arbitraryl, the model describes an exclusion process, in which a
particle pushes its right neighboring particles to the right, with rates depending on the number of these
particles. Using the Bethe ansatz, we obtain the exact solution of the master equation.
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I. INTRODUCTION

Various versions of one-dimensional asymmetric sim
exclusion processes~ASEP! have been shown to be of phys
cal interest in a variety of problems including the kinetics
biopolymerization@1#, polymers in random media, dynam
cal models of interface growth@2#, and traffic models@3#.
This model is also related to the noisy Burgers equation@4#,
and thus to the study of shocks@5,6#. Besides the equilibrium
properties of this model, its dynamical properties have a
been studied in@6–8#.

Recently the totally ASEP model, with sequenc
updating on an infinite lattice, has been solved exactly
Schütz @9# using the coordinate Bethe ansatz. In th
model, each lattice site can be occupied by at most
particle and a particle hops with rate one to its rig
neighboring site if it is not already occupied; otherwi
the attempted move is rejected. In his work, instead of us
the quantum Hamiltonian formalism, which is suitab
for studying the dynamical exponents and cert
time-dependent correlation functions, Schu¨tz adopted the
coordinate representation for writing the master equat
By solving the master equation exactly, he was able
obtain explicit expressions for conditional probabiliti
P(x1 ,x2 , . . . ,xN ;tuy1 ,y2 , . . . ,yN ;0) of findingN particles
on lattice sitesx1 , . . . ,xN at time t with initial occupation
y1 , . . . ,yN at time t50.

The master equation for the probability of findin
particle 1 on sitek1, particle 2 on sitek2 , . . . , andpar-
ticle N on site kN , with kN.kN21.•••k2.k1, is written
as

]

]t
P~k1 ,k2 , . . . ,kN ,t !

5P~k121,k2 , . . . ,kN ,t !1P~k1 ,k221, . . . ,kN ,t !
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1•••1P~k1 ,k2 , . . . ,kN21,t !

2NP~k1 ,k2 , . . . ,kN ,t !, ~1!

if ki 112ki.1. This equation was then augmented by t
following boundary condition:

P~k,k,t !5P~k,k11,t !, ;k. ~2!

In writing Eq. ~2!, we have supressed for simplicity the p
sition of all the other particles, bearing in mind that th
condition should hold for every pair of adjacent variableski
and ki 11. In the following we always use this simplifie
notation. It was then shown that Eqs.~1! and ~2! give the
correct master equation in the whole physical region~i.e., the
regionki,ki 11) for the probabilities. In the rest of@9#, the
exact solution of the master equation~1! @with boundary con-
dition ~2!# is constructed.

We now describe what we have done in the present pa
In Sec. II, we substitute the boundary condition~2! by

P~k,k,t !5P~k21,k,t !, ;k, ~3!

and show that this boundary condition, together with Eq.~1!,
describes then51 drop-push dynamics@10#. In this process,
even if the right neighboring sites of a particle are occupi
the particle hops with rate one to the next right site, push
the right neighboring particles to the next sites. Th
means that all the following processes occur with equal r
one:

A0→0A,

AA0→0AA,

AAA0→0AAA,

~4!
6370 © 1998 The American Physical Society
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57 6371EXACT SOLUTION OF A ONE-PARAMETER FAMILY OF . . .
where we have adopted the standard notation for r
resenting a particle byA and a vacancy by 0. We then ob
tain a closed form for the conditional proabilities for th
process.

This process, in which a particle pushes as many p
ticles with rate one, is the opposite extreme of wh
was solved by Schu¨tz, and interestingly admits a close
form solution for the conditional probabilitie
P(x1 ,x2 , . . . ,xN ;tuy1 ,y2 , . . . ,yN ;0) in the form of anN
3N determinant.

In Sec. III, we combine the boundary condition~2! and
~3! in the form

P~k,k,t !5lP~k,k11,t !1~12l!P~k21,k,t !, ;k,
~5!

and show that the resulting master equation@~1! and ~5!#,
describes a procession that the processes shown in E~4!
occur with unequal rates: namely, the process

~6!

occurs with rate

r n5
1

11l/m1~l/m!21•••1~l/m!n , ~7!

where m512l. We call this modelgeneralized totally
asymmetric exclusion process. In the limit l→0, we have
r n51,;n, and in the limitl51, we haver 051 and r nÞ0
50. Note also thatr n11<r n , ;n. Therefore this process i
perhaps more physical than the two extreme cases studi
@9# and in Sec. II of this paper.

In Sec. IV, we use the coordinate Bethe ansatz and s
the master equation of the process defined in Sec. III,
show that there is no bound state in the spectrum.

In Sec. V, we write the quantum Hamiltonian formalis
for the generalized process and, using a particle-hole
change transformation, show that this generalized proce
equivalent~i.e., in the same universality class! to another
process, where particles hop only to the left. In this n
process, if a left neighboring site is occupied, the move
rejected, but if a set of the left neighboring sites are emp
the particle hops with distance dependent rates to these s

0A→A0 with rate r 0

00A→A00 with rate r 1

A

~8!

Therefore a transformation as simple as a particle-hole
change, when applied to our generalized process, has a
teresting physical consequence. Models with different val
of l all allow exact solutions in the form of the coordina
Bethe ansatz and their spectra have only the continuous
but only the limiting cases of these models (l50 and 1)
allow a closed solution in the form of a determinant.

We end up the paper with conclusion in Sec. V.
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II. GENERALIZED TOTALLY ASYMMETRIC
EXCLUSION PROCESS WITH l50

We augment the master equation~1! with the boundary
condition~3!. Although we derive the rates for arbitraryl in
the next section by a general argument, here we wan
show that forl50 case, the master equation~1! @together
with the boundary condition~3!# describe ann51 drop-push
dynamics. For simplicity, consider the two particle sector
n51 drop push dynamics. The master equations are

]

]t
P~k1 ,k2 ,t !5P~k121,k2 ,t !1P~k1 ,k221,t !

22P~k1 ,k2 ,t !, k2.k111, ~9!

]

]t
P~k,k11,t !5P~k21,k11,t !1P~k21,k,t !

22P~k,k11,t !. ~10!

Now, if we choose the boundary condition

P~k,k,t !5P~k21,k,t !, ;k, ~38!

Eq. ~10! can be written as

]

]t
P~k,k11,t !5P~k21,k11,t !1P~k,k,t !

22P~k,k11,t !, ~11!

which is of the same form as Eq.~9!.
In the three particle sector, the extra equation that ne

to be taken into account is

]

]t
P~k,k11,k12!5P~k21,k11,k12!1P~k21,k,k12!

1P~k21,k,k11!23P~k,k11,k12!.

~12!

Using the boundary condition~3!, the second and the third
terms on the right-hand side of Eq.~12! can be written as

P~k21,k,k12!5P~k,k,k12!, ~13!

P~k21,k,k11!5P~k,k,k11!5P~k,k11,k11!,
~14!

which means that Eq.~12! is equivalent to the following
standard form:

]

]t
P~k,k11,k12!5P~k21,k11,k12!1P~k,k,k12!

1P~k,k11,k11!23P~k,k11,k12!.

~15!

This procedure can be repeated for any sector. We will g
a general proof in the next section.
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To solve the master equation~1!, and the boundary con
dition ~3!, for the conditional probability
P(x1 ,x2 , . . . ,xN ;tuy1 ,y2 , . . . ,yN ;0), we set, following
Schütz @9#,

P~x1 ,x2 , . . . ,xN ;tuy1 ,y2 , . . . ,yN ;0!5e2NtdetGN ,
~16!

where GN is an N3N matrix with entriesGi j 5gi 2 j (xi
2yj ,t). The functionsgp(x,t) are to be determined. Writing
GN as

GN5detF G1~x1 ,t !

]

Gi~xi ,t !

]

GN~xN ,t !

G , ~17!

where

Gi~xi !5@gi 21~xi2y1 ,t !,gi 22~xi2y2 ,t !, . . . ,

gi 2N~xi2yN ,t !#, ~18!

and inserting Eq.~16! in ~1!, we obtain

(
i 51

N

det3
G1~x1 ,t !

]

]

]t
Gi~xi ,t !

]

GN~xN ,t !

4 5(
i 51

N

detF G1~x1 ,t !

]

Gi~xi21,t !

]

GN~xN ,t !

G , ~19!

the solution of which is

]

]t
Gi~xi ,t !5Gi~xi21,t !. ~20!

Inserting Eq.~16! in the boundary condition~3!, we obtain

det3
G1~x1 ,t !

]

Gk21~x,t !

Gk~x,t !

]

GN~xN ,t !

4 5det3
G1~x1 ,t !

]

Gk21~x21,t !

Gk~x,t !

]

GN~xN ,t !

4 , ~21!

the solution of which is

Gk21~x,t !5Gk21~x21,t !1bGk~x,t !, ~22!

whereb is an arbitrary parameter. The explicit form of th
function gp(x,t) can now be determined: these functions,
seen by Eqs.~20! and ~22!, should satisfy the following re-
lations:

]

]t
gp~n,t !5gp~n21,t !, ~23!
s

gp~n,t !5gp~n21,t !1bgp11~n,t !. ~24!

Defining the generating functions~or z transforms! g̃p(z,t):
5(n52`

` zngp(n,t), Eqs.~23! and ~24! are converted to

]

]t
g̃p~z,t !5zg̃p~z,t !, ~25!

and

g̃p11~z,t !5
1

b
~12z!g̃p~z,t !, ~26!

the solution of which is simply obtained as

g̃p~z,t !5eztg̃p~z,0!5eztS 12z

b D p

g̃0~z,0!. ~27!

g̃0(z,0) is nothing but the generating function forg0(n,0),
the one particle sector probabilities att50. Since
P(x,0uy,0)5g0(x2y,0)5dx,y , we haveg0(n,0)5dn,0 , and
thus g̃0(z,0)51, giving finally

g̃p~z,t !5eztS 12z

b D p

. ~28!

The parameterb, as long as it is nonzero, drops out of th
determinant and so we can set it equal to unity. The fu
tionsgp(n,t) are obtained by expanding the generating fun
tions. Note that the functionsg̃p(z,t) should be expanded in
terms of positive powers ofz, if p,0. This is due to the fact
that, forp,0, asn→2`, the functiongp(n,t) tend to zero,
since this limit is in the physical region. This expansio
yields, formally,

gp~n,t !5 (
k52`

n S p
n2kD ~21!n2k

k!
tk. ~29!

If p>0, gp(n,t) is converted to a finite sum

gp>0~n,t !5 (
k50

min~n,p! S p
k D ~21!k

~n2k!!
tn2k. ~30!

In particular,

g0~n,t !5
tn

n!
. ~31!

If p,0, gp(n,t) is converted to another finite sum

gp~n,t !5 (
k50

n S upu1k21
upu21 D tn2k

~n2k!!
. ~32!

We have thus obtained an explicit relation for the conditio
probability.
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III. GENERALIZED TOTALLY ASYMMETRIC
EXCLUSION PROCESS WITH ARBITRARY l

We now consider the master equation~1! together with
the boundary condition

P~k,k,t !5lP~k,k11,t !1mP~k21,k,t !, ;k. ~58!

It can be easily shown that the conservation of probabi
demands thatm512l. In order to understand what type o
process is described by these equations, we first look a
two particle case. Equations~1! and ~58! yield

]

]t
P~k,k11!5P~k21,k11!1P~k,k!22P~k,k11!

5P~k21,k11!1mP~k21,k!

2~11m!P~k,k11!, ~33!

which means the following rates:

A0→0A with rate r 051,

AA0→0AA with rate r 15m.
y

he

To find the rates in the general case, we first prove a lem
Lemma:Equation~58! implies, for arbitraryn, the follow-

ing:

P~k,k11,k12, . . . ,k1n21,k1n,k1n!

5~12r n11!P~k,k11,k12, . . . ,k1n21,k

1n,k1n11!1r n11P~k21,k,k11, . . . ,k1n

22,k1n21,k1n!, ~34!

where

r n5F11
l

m
1S l

m D 2

1•••1S l

m D nG21

. ~35!

Proof: We proceed by induction. Forn50, Eqs.~34! and
~35! are the same as Eq.~58!, asr 15m. Assuming now that
Eqs.~34! and ~35! are correct forn21, and using Eq.~58!,
we have
P~k,k11, . . . ,k1n21,k1n,k1n!

5lP~k,k11, . . . ,k1n21,k1n,k1n11!1mP~k,k11, . . . ,k1n21,k1n21,k1n!

5lP~k,k11, . . . ,k1n21,k1n,k1n11!1m$~12r n!P~k,k11, . . . ,k1n21,k1n,k1n!

1r nP~k21,k, . . . ,k1n22,k1n21,k1n!%, ~36!
or

P~k,k11, . . . ,k1n21,k1n,k1n!

5sn11P~k,k11, . . . ,k1n21,k1n,k1n11!

1r n11P~k21,k, . . . ,k1n22,k1n21,k1n!, ~37!

where

l

12m~12r n!
5sn11 ,

mr n

12m~12r n!
5r n11 . ~38!

From Eq.~38!, it is seen thatsn111r n1151. One can now
solve the second equation of~38! for r n11 to obtain

mr n

l1mr n
5r n11 or r n11

21 5
l

m
r n

2111,

which gives

r n11
21 511

l

mH 11
l

m
1S l

m D 2

1•••1S l

m D nJ
511

l

m
1S l

m D 2

1•••1S l

m D n11

.

This proves the lemma.
We now consider a collection ofn adjacent particles and

write the master equation for this configuration by Eq.~1!:

]P

]t
~k,k11,k12, . . . ,k1n21!

5 (
i 50

n21

P~k,k11, . . . ,k1 i 22,k1 i 21,k1 i 21,k1 i

11, . . . ,k1n21!2nP~k,k11,k12, . . . ,k1n21!.

~39!

Using Eq.~34!, we find

]P

]t
~k,k11,k12, . . . ,k1n21!

5 (
i 50

n21

r i P~k21,k, . . . ,k1 i 22,k1 i 21,k1 i 11, . . . ,k

1n21!2S (
i 50

n21

r i D P~k,k11,k12, . . . ,k1n21!.

~40!
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It is now obvious that the above equation describes a pro
in which a collection ofi 11 adjacent particles hop to th
right with rater i , as claimed in the Introduction.

IV. THE BETHE ANSATZ SOLUTION FOR ARBITARY l

In this section we denote the position of the partic
by xiPZ rather than ki , and apply the Bethe ansa
for the solution of the master equation~1! and the
boundary condition ~58!. Writing PN(x1 , . . . ,xN ,t)
5e2eNtCN(x1 , . . . ,xN), will turn Eq. ~1! into an eigenvalue
equation forCN(x1 , . . . ,xN):

(
i 51

N

CN~x1 , . . . ,xi21, . . . ,xN!

5~N2eN!CN~x1 , . . . ,xi , . . . ,xN!. ~41!

We write the coordinate Bethe ansatz forC in the form:

CN~x1 , . . . ,xN!5(
s

Aseis~p!•x, ~42!

where x and p stand for then-tuple coordinates and mo
menta ands(p) is a permutation of momenta. The sum
over all permutations. Inserting Eq.~42! into Eq. ~41! yields

(
s

Aseis~p!•x~e2 is~p1!1e2 is~p2!1•••1e2 is~pN!!

5~N2eN!CN~x1, . . . ,xN!. ~43!

The sum in the parentheses can be written as(k51
N e2 ipk and

taken outside(s , yielding

eN :5 (
k51

N

e~pk!5 (
k51

N

~12e2 ipk!. ~44!

Note that due to translational invariance,CN is also an ei-
genvector of total momentumP, which in the lattice is de-
fined as the logarithm of the shift operatorU5e2 iP:

~UCN!~x1 , . . . ,xN!:5CN~x121,x221, . . . ,xN21!.
~45!

Acting by U on Eq.~42!, we obtain

~PCN!~x1 , . . . ,xN!5~p11•••1pN!CN~x1 , . . . ,xN!.
~46!

Therefore the eigenvectorsCN have additive totalenergies
and momenta. Inserting Eq.~42! in the boundary condition
~58!, rewritten in an unabbreviated form

C~x1 , . . . ,xi5j,xi 115j, . . . ,xN!

5lC~x1 , . . . ,xi5j,xi 115j11, . . . ,xN!

1mC~x1 , . . . ,xi5j21,xi 115j, . . . ,xN!,

we obtain
ss

s

(
s

ei (kÞ i ,i 11s~pk!xk1 i [s~pi !1s~pi 11!] j@As~12leis~pi 11!

2me2 is~pi !!#50. ~47!

We denote the expression in the bracket byBs . Noting that
the prefactor is unaffected by an interchange ofpi andpi 11,
it follows that the proper coefficient of each prefactor, whi
should vanish, isBs1Bss i

, wheres i is the generator ofSN

~the permutation group ofN object!, which only interchanges
pi andpi 11

s i~p1 , . . . ,pi ,pi 11 , . . . ,pN!5~p1 , . . . ,pi 11 ,pi ,•••,pN!,
~48!

and ss i stands for the product of two group elements,s
acting afters i . Therefore we find

As~12leis~pi 11!2me2 is~pi !!1Ass i
~12leis~pi !

2me2 is~pi 11!!50,

or

Ass i

As
5

leis~pi 11!1me2 is~pi !21

12leis~pi !2me2 is~pi 11! 5S@s~pi !,s~pi 11!#.

~49!

This relation, in effect, allows one to find all theAs’s in
terms ofA1 ~which is set to unity!. The first few coefficients,
corresponding to the elements 1,s1 ,s2 ,s1s2 ,s2s1 ,
s1s2s1 are

A151, As1
5S12, As2

5S23,

As1s2
5S12S13, As2s1

5S13S23, As1s2s1
5S12S13S23,

~50!

whereSi j 5S(pi ,pj ). The form of the scattering matrixSi j
could also be found from the two particle sector alone. T
above analysis shows in fact the factorizibility of theS ma-
trix in the general case, a sign of the integrability of t
problem.

To find the range ofpi ’s, we analyze theS matrix,

S125
leip21me2 ip121

12leip12me2 ip2
5

c21

c12
, ~51!

and the two particle wave function

C2~x1 ,x2!5c12e
i ~p1x11p2x2!1c21e

i ~p2x11p1x2!,

or

C~X,x!5eiPX~c12e
ipx1c21e

2 ipx!, ~52!

where X:5 1
2 (x11x2), x:5x12x2, P:5p11p2, and p:

5 1
2 (p12p2) with clear physical meanings. Sincex is nega-

tive (x1,x2), to have a bound state one of the following s
of conditions should be satisfied simultaneously. Either

c1250, Imp.0, ImP50,

or

c2150, Imp,0, ImP50.

Rewriting c12 in terms of the new momenta, we fin
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c125eip~e2 ip2leiP/22me2 iP/2!. ~53!

Since ImP50 we have

uleiP/21me2 iP/2u<l1m51. ~54!

Noting that ue2 ipu.1, it is seen thatc12 cannot vanish. A
similar analysis applies for the second set of conditio
Therefore no bound state exists in the spectrum, and
range of all momentum variables is@0,2p).

To find the conditional probability
PN(x1 ,x2 , . . . ,xN ;tuy1 ,y2 , . . .yN ;0), oneshould take a lin-
ear combination of the eigenfunctionsCN , with suitable co-
efficients. Consider the two particle sector. We have

P2~x1 ,x2 ;tuy1 ,y2 ;0!5E
0

2pE
0

2p dp1

2p

dp2

2p

3e2[ e~p1!1e~p2!] t2 ip1y12 ip2y2

3C2~x1 ,x2!. ~55!
x

es

ra
.
he

This is just a linear combination of the eigenfunctions, sa
fying the initial condition

P2~x1 ,x2 ;0uy1 ,y2 ;0!5dx1 ,y1
dx2 ,y2

,

in the physical region (x2.x1 ,y2.y1). The eigenfunction
C2(x1 ,x2) in Eq. ~55! is normalized according to

C2~x1 ,x2!5ei ~p1x11p2x2!1S12e
i ~p2x11p1x2!.

To avoid the singularity inS12, we setp1→p11 i e. With
this prescription, the contribution of the second term inC2

to P2(x1 ,x2 ,0uy1 ,y2 ,0) identically vanishes in the physica
region. Using the variablesj:5eip1 andh:5e2 ip2, a simple
contour integration yields
cases
P2~x1 ,x2 ;tuy1 ,y2 ;0!5e22tH tx12y1

~x12y1!!

tx22y2

~x22y2!!
2 (

k50

`

(
m50

k S k
mDlmmk2m

tx22y11m

~x22y11m!!

tx12y22k1m

~x12y22k1m!!

3F12
lt

x12y22k1m11
2

m~x22y11m!

t G J . ~56!

It is easy to see, explicitly, that this solution satisfies the initial condition in the physical region. Also, in the limiting
l51 andl50, it reduces, respectively, to

P2~x1 ,x2 ;tuy1 ,y2 ;0!5e22tH tx12y1

~x12y1!!

tx22y2

~x22y2!!
2F tx12y2

~x12y2!!
2

tx12y211

~x12y211!! G (k50

`
tx22y11k

~x22y11k!! J , ~57!

obtained in@9#, and

P2~x1 ,x2 ;tuy1 ;y2 ,0!5e22tH tx12y1

~x12y1!!

tx22y2

~x22y2!!
2F tx22y1

~x22y1!!
2

tx22y121

~x22y121!! G (k50

`
tx12y22k

~x12y22k!! J , ~58!

obtained in the present paper.
The treatment of theN particle case is similar. We have

PN~x1 , . . . ,xN ;tuy1 , . . . ,yN ;0!5E
0

2p dp1

2p
•••E

0

2p dpN

2p
e2[ (e~pi !] t2 i (piyiCN~x1 , . . . ,xN!.
the
The integration is defined with the followinge prescription:
in Si j ( i , j ), pi is replaced bypi1 i e.

V. HAMILTONIAN APPROACH

The Hilbert space of generalized totally asymmetric e
clusion process isH5 ^ C2, the tensor product of all the
local Hilbert spaces of the lattice sites.C2 is the two dimen-
sional vector space with basis statesu0&5(0

1) and u1&5(1
0).

The statesu0& and u1& represent vaccant and occupied sit
respectively. The local operatorsni5(0

0
1
0), s i

15(0
0

0
1), and

s i
25(1

0
0
0) are the number, annihilation, and creation ope
-

,

-

tors, respectively. Their action on a bra state^au, (a50,1),
can be conveniently represented as^aun5a^au, ^aus1

5(12a)^12au and ^aus25a^12au.
The state of the systemuC(t)& evolves according to the

Schrödinger type equation2]/]tuC(t)&5HuC(t)&. The
connection between the two representations is given by
relation

P~k1 ,k2 , . . . ,kN ,t !5^k1 ,k2 , . . . ,kNuCN~ t !&

5^0usk1

1 sk2

1 , . . . ,skN

1 uCN~ t !&.

~59!
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The Hamiltonian of the process can now be written as

H52 (
kPL

(
l>1

r l 21@vk~ l !2wk~ l !#, ~60!

whereL represents the sites of the lattice and

vk~ l !5sk
1nk11nk12•••nk1 l 21sk1 l

2 , ~61!

wk~ l !5nknk11nk12•••nk1 l 21~12nk1 l !. ~62!

Consider a bra state containingl particles on adjacent sites
^k11,k12, . . . ,k1 l u. The only terms inH with nonvanish-
ing action on this state are

^k11,k12, . . . ,k1 l uvk~ i !

5^k,k11, . . . ,k1 i 21,k1 i 11, . . . ,k1 l u,

1< i< l , ~63!

^k11,k12, . . . ,k1 l uwk111 l 2 i~ i !

5^k11,k12, . . . ,k1 l u, 1< i< l . ~64!

Note that the action of the above operators on every o
state that contains, beside the above particles, other co
tion of particles disconnected from the above one is
same. Using Eqs.~59!–~64!, one arrives at Eq.~40! for the
evolution of the probability. Note that the quantum Ham
tonian ~60! is a stochastic operator, meaning that all of
off-diagonal matrix elements are nonpositive with the sum
entries in each column being equal to zero. This last prop
is expressed by saying that^SuH50 where^Su is the sum of
all basis states ofH. Equivalent models may be obtained b
constructing operatorsV:H→H and Hamiltonians H8
5VHV21, which preserve the above properties. An obvio
example is the particle-hole exchange operatorV5) is i

x . It
clearly has the property that^SuV5^Su, so that forH8 we
also havê SuH850. It is easy to see that this transformatio
induces the changesn↔12n and s1↔s2. So the master
equation obtained fromH8 describes the process~8!.
rs

e,

er

ld
er
c-
e

f
ty
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VI. DISCUSSION AND OUTLOOK

We have defined a generalized exclusion process, par
etrized by a real parameterlP@0,1#, and have shown tha
the master equation of this model admits for everyl an exact
solution via the coordinate Bethe ansatz. We have a
shown that this model interpolates continuously between
very different models: the totally asymmetric exclusio
model~for l51), which we may consider as the weak co
pling limit and the drop-push model~for l50), which may
be considered as the strong coupling limit of the model.
these two limits, the solution acquires a simple determin
form.

Our work can be further investigated in one definite wa
It may be that the pointl5 1

2 is a point of phase transition
and the study of the equilibrium properties of the model o
periodic lattice may reveal this transition. There are alrea
two pieces of evidence for the validity of this conjectur
First, there is some sort of duality between two models w
parameters symmetric with respect tol51/2. To be more
specific, we have

S~p1 ,p2 ;l!5S~2p2 ,2p1 ;12l!. ~65!

Second, the largel behavior of the transition rates is

r l;5
12

l

m
, l,

1

2

1

l
, l5

1

2

S l

m D 2 l

, l.
1

2
.

It will be interesting to study the stationary behavior of th
system along the lines that have been followed in@11–14#, to
see what kind of phases develop in the system by varyingl.
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